
Python guide for complete beginners 70

Chapter 6 - Errors

In this chapter you will learn how to deal with errors in your code. You will learn different types of
errors, and how you can catch specific exceptions.

Python guide for complete beginners 71

Types of errors

Errors in Python can be categorized into two types:

1. Compile time errors – errors that occur when you ask Python to run the application. Before
the program can be run, the source code must be compiled into the machine code. If the
conversion can not perfomed, Python will inform you that your application can not be run before
the error is fixed. The most common errors of this type are syntax errors – for example, if you
don’t end an if statement with the colon. Here is an example:

x = int(input('Enter a number: '))

if x%2 == 0

 print('You have entered an even number.')

else:

 print ('You have entered an odd number.')

The code above checks if the number the user enters is an odd or an even number. However,
notice how the if statement is missing the colon (:) at the end of the line. Because of it, the
program won’t run and the interpreter will even inform us what the problem is:

C:Python34Scripts>python error.py

File "error.py", line 3

if x%2 == 0

^

SyntaxError: invalid syntax

2. Runtime errors – errors that occur after the code has been compiled and the program is
running. The error of this type will cause your program to behave unexpectedly or even crash.
An example of an runtime error is the division by zero. Consider the following example:

x = float(input('Enter a number: '))

y = float(input('Enter a number: '))

z = x/y

print (x,'divided by',y,'equals: ',z)

The program above runs fine until the user enters 0 as the second number:

>>>

Python guide for complete beginners 72

Enter a number: 9

Enter a number: 2

9.0 divided by 2.0 equals: 4.5

>>>

Enter a number: 11

Enter a number: 3

11.0 divided by 3.0 equals: 3.6666666666666665

>>>

Enter a number: 5

Enter a number: 0

Traceback (most recent call last):

File "C:/Python34/Scripts/error1.py", line 3, in <module>

z = x/y

ZeroDivisionError: float division by zero

>>>

Syntax and logical errors

Two types of errors can occur in Python:

1. Syntax errors – usually the easiest to spot, syntax errors occur when you make a typo. Not
ending an if statement with the colon is an example of an syntax error, as is misspelling a
Python keyword (e.g. using whille instead of while). Syntax error usually appear at compile time
and are reported by the interpreter. Here is an example of a syntax error:

x = int(input('Enter a number: '))

whille x%2 == 0:

 print('You have entered an even number.')

else:

 print ('You have entered an odd number.')

Notice that the keyword whille is misspelled. If we try to run the program, we will get the
following error:

Python guide for complete beginners 73

C:Python34Scripts>python error.py

 File "error.py", line 3

 whille x%2 == 0:

 ^

SyntaxError: invalid syntax

2. Logical errors – also called semantic errors, logical errors cause the program to behave
incorrectly, but they do not usually crash the program. Unlike a program with syntax errors, a
program with logic errors can be run, but it does not operate as intended. Consider the following
example of an logical error:

x = float(input('Enter a number: '))

y = float(input('Enter a number: '))

z = x+y/2

print ('The average of the two numbers you have entered is:',z)

The example above should calcuate the average of the two numbers the user enters. But,
because of the order of operations in arithmetic (the division is evaluated before addition) the
program will not give the right answer:

>>>

Enter a number: 3

Enter a number: 4

The average of the two numbers you have entered is: 5.0

>>>

To rectify this problem, we will simply add the parentheses: z = (x+y)/2

Now we will get the right result:

>>>

Enter a number: 3

Enter a number: 4

The average of the two numbers you have entered is: 3.5

>>>

Python guide for complete beginners 74

The try…except statements

To handle errors (also known as exceptions) in Python, you can use the try…except
statements. These statements tell Python what to do when an exception is encountered. This
act of detecting and processing an exception is called exception handling. The syntax of the
try…except statements is:

try:

 statements # statements that can raise exceptions

except:

 statements # statements that will be executed to handle exceptions

If an exception occurs, a try block code execution is stopped and an except block code will be
executed. If no exception occurs inside the try block, the statements inside the except block will
not be executed.

Consider the following example:

age=int(input('Enter your age: '))

if age <= 21:

 print('You are not allowed to enter, you are too young.')

else:

 print('Welcome, you are old enough.')

The example above asks the user to enter his age. It then checks to see if the user is old
enough (older than 21). The code runs fine, as long as the user is entering only numberic
values. However, consider what happens when the user enters a string value:

>>>

Enter your age: 13

You are not allowed to enter, you are too young.

>>> RESTART

>>>

Enter your age: 22

Welcome, you are old enough.

>>> RESTART

Python guide for complete beginners 75

>>>

Enter your age: a

Traceback (most recent call last):

 File "C:/Python34/Scripts/exceptions.py", line 2, in <module>

 age=int(input('Enter your age: '))

ValueError: invalid literal for int() with base 10: 'a'

>>>

Because a numeric value is expected, the program crashed when the user entered a non-
numeric value. We can use the try…except statements to recify this:

try:

 age=int(input('Enter your age: '))

except:

 print ('You have entered an invalid value.')

Now, the code inside the try block has its exceptions handled. If the user enters a non-numeric
value, the statement inside the except block will be executed:

>>>

Enter your age: a

You have entered an invalid value.

>>>

In the example above the except clause catches all the exceptions that can occur, which is not
considered a good programming practice. The except clause can have a specific exception
associated, which we will describe in the following lessons.

The try…except…else statements

You can include an else clause when catching exceptions with a try statement. The statements
inside the else block will be executed only if the code inside the try block doesn’t generate an
exception. Here is the syntax:

try:

 statements # statements that can raise exceptions

except:

 statements # statements that will be executed to handle exceptions

Python guide for complete beginners 76

else:

 statements # statements that will be executed if there is no exception

Here is an example:

try:

 age=int(input('Enter your age: '))

except:

 print ('You have entered an invalid value.')

else:

 if age <= 21:

 print('You are not allowed to enter, you are too young.')

 else:

 print('Welcome, you are old enough.')

The output:

>>>

Enter your age: a

You have entered an invalid value.

>>> RESTART

>>>

Enter your age: 25

Welcome, you are old enough.

>>>RESTART

>>>

Enter your age: 13

You are not allowed to enter, you are too young.

>>>

As you can see from the output above, if the user enters a non-numeric value (in this case the
letter a) the statement inside the except code block will be executed. If the user enters a
numeric value, the statements inside the else code block will be executed.

Python guide for complete beginners 77

The try…except…finally statements

You can use the finally clause instead of the else clause with a try statement. The difference is
that the statements inside the finally block will always be executed, regardless whether an
exception occurrs in the tryblock. Finally clauses are also called clean-up or termination
clauses, because they are usually used when your program crashes and you want to perform
tasks such as closing the files or logging off the user. Here is the syntax:

try:

 statements # statements that can raise exceptions

except:

 statements # statements that will be executed to handle exceptions

finally:

 statements # statements that will always be executed

Here is an example:

try:

age=int(input('Enter your age: '))

except:

print ('You have entered an invalid value.')

finally:

print ('There may or may not have been an exception.')

The output:

>>>

Enter your age: 55

There may or may not have been an exception.

>>> RESTART

>>>

Enter your age: a

You have entered an invalid value.

There may or may not have been an exception.

>>>

Python guide for complete beginners 78

Note that the print statement inside the finally code block was executed regardless of whether
the exception occured or not.

Catch specific exceptions

We’ve already mentioned that catching all exceptions with the except clause and handling every
case in the same way is not considered to be a good programming practice. It is recommended
to specify the exact exceptions that the except clause will catch. For example, to catch an
exception that occurs when the user enters a non-numerical value instead of a number, we can
catch only the built-in ValueError exception that will handle such event. Here is an example:

try:

 age=int(input('Enter your age: '))

except ValueError:

 print('Invalid value entered.')

else:

 if age >= 21:

 print('Welcome, you are old enough.')

 else:

 print('Go away, you are too young.')

The code above will ask the user for his age. If the user enters a number, the program will
evaluate whether the user is old enough. If the user enters a non-numeric value, the Invalid
value entered message will be printed:

>>>

Enter your age: 5

Go away, you are too young.

>>>RESTART

>>>

Enter your age: 22

Welcome, you are old enough.

>>>RESTART

>>>

Enter your age: a

Invalid value entered.

>>>

Python guide for complete beginners 79

In the output above, you can see that the statements inside the else clause were executed when
the user entered a number. However, when the user entered a non-numeric value (the letter a),
the ValueError exception occured and the print statement inside the except ValueError clause
was executed.

Note that the except ValueError clause will catch only exceptions that occur when the user
enters a non-numeric value. If another exception occur, such as the KeyboardInterrupt
exception (raised when the user hits Ctrl+c), the except ValueError block would not handle it.
You can, however, specify multiple except clauses to handle multiple exceptions, like in this
example:

try:

 age=int(input('Enter your age: '))

except ValueError:

 print('Invalid value entered.')

except KeyboardInterrupt:

 print('You have interrupted the program.')

else:

 if age >= 21:

 print('Welcome, you are old enough.')

 else:

 print('Go away, you are too young.')

The output:

>>>

Enter your age: 5

Go away, you are too young.

>>> RESTART

>>>

Enter your age: 22

Welcome, you are old enough.

>>>RESTART

>>>

Enter your age: a

Invalid value entered.

>>>

>>>

Python guide for complete beginners 80

Enter your age:

You have interrupted the program.

>>>

You can also handle multiple exceptions with a single except clause. We can simple rewrite our
program like this:

try:

 age=int(input('Enter your age: '))

except (ValueError, KeyboardInterrupt):

 print('There was an exception.')

else:

 if age >= 21:

 print('Welcome, you are old enough.')

 else:

 print('Go away, you are too young.')

Raise exception

You can manually throw (raise) an exception in Python with the keyword raise. This is usually
done for the purpose of error-checking. Consider the following example:

try:

 raise ValueError

except ValueError:

 print('There was an exception.')

The code above demonstrates how to raise an exception. Here is the output:

>>>

There was an exception.

>>>

You can use the raise keyword to signal that the situation is exceptional to the normal flow. For
example:

x = 5

if x < 10:

Python guide for complete beginners 81

 raise ValueError('x should not be less than 10!')

Notice how you can write the error message with more information inside the parentheses. The
example above gives the following output (by default, the interpreter will print a traceback and
the error message):

>>>

Traceback (most recent call last):

 File "C:/Python34/Scripts/raise1.py", line 3, in <module>

 raise ValueError('x should not be less than 10!')

ValueError: x should not be less than 10!

>>>

